.. _datasets: Datasets ======== **Olympus** provides various datasets form across the natural sciences that form the basis of realistic and challenging benchmarks for optimization algorithms. :ref:`models` trained on these datasets provide :ref:`emulators` that are used to simulate an experimental campaign. While you can load pre-trained :ref:`emulators` based on these datasets, you can load these datasets with ``Dataset`` class:: from olympus.datasets import Dataset dataset = Dataset(kind='snar') The datasets currently available are the following: .. toctree:: :maxdepth: 1 alkox colors_bob colors_n9 fullerenes hplc benzylation photo_pce10 photo_wf3 snar suzuki ===== =========================== ============== ================= ====== No. Dataset Kind Keyword Objective Goal ===== =========================== ============== ================= ====== 1 :ref:`dataset_alkox` alkox reaction rate Max 2 :ref:`dataset_colors_bob` colors_bob green-ness Min 3 :ref:`dataset_colors_n9` colors_n9 green-ness Min 4 :ref:`dataset_fullerenes` fullerenes yield of X1+X2 Max 5 :ref:`dataset_hplc` hplc peak area Max 6 :ref:`dataset_photo_pce10` photo_pce10 stability Min 7 :ref:`dataset_photo_wf3` photo_wf3 stability Min 8 :ref:`dataset_snar` snar e_factor Min 9 :ref:`dataset_benzylation` benzylation e_factor Min 10 :ref:`dataset_suzuki` suzuki yield Max ===== =========================== ============== ================= ====== In addition to the **Olympus** datasets, you can load your own custom ones:: from olympus.datasets import Dataset import pandas as pd mydata = pd.from_csv('mydata.csv') dataset = Dataset(data=mydata) Dataset Class ------------- .. currentmodule:: olympus.datasets .. autoclass:: Dataset :noindex: :exclude-members: add, from_dict, generate, get, to_dict .. rubric:: Methods .. autosummary:: dataset_info set_param_space get_cv_fold