{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Custom Planner" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example, you will learn how to integrate your own optimization algorithm to be used within _Olympus_. As a simple example, here we will create a `Planner` that implements a random sampler. To better understand what is happening in the code and how to further customize your `Planner`, we suggest you take a look at the \"Developer's Guide\" section of the documentation.\n", "\n", "First, we import the `CustomPlanner` class." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from olympus.planners import CustomPlanner" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we define a class that inherits from `CustomPlanner` and implements the `_ask` method." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from olympus import ParameterVector\n", "\n", "class RandomSampler(CustomPlanner):\n", " \n", " def _ask(self):\n", " new_params = []\n", " for param in self._param_space:\n", " new_param = np.random.uniform(low=param['domain'][0], high=param['domain'][1])\n", " new_params.append(new_param)\n", " \n", " return ParameterVector(array=new_params, param_space=self.param_space)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's check whether we can not use our new algorithm within _Olympus_." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from olympus import Surface\n", "\n", "# initialise an analytical toy surface\n", "surface = Surface(kind='Dejong', param_dim=2)\n", "\n", "# initialise our planner\n", "planner = RandomSampler()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[0;37m[INFO] Optimize iteration 1\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 2\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 3\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 4\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 5\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 6\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 7\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 8\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 9\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m\u001b[0;37m[INFO] Optimize iteration 10\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining parameters from planner...\n", "\u001b[0m\u001b[0;37m[INFO] Obtaining measurement from emulator...\n", "\u001b[0m" ] } ], "source": [ "# optimise the surface for 10 iterations\n", "campaign = planner.optimize(surface, num_iter=10, verbose=True)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.87168557 0.62387334] [3.04089887]\n", "[0.61641219 0.14017234] [2.9758572]\n", "[0.10831711 0.32985981] [3.28347596]\n", "[0.53705365 0.01023886] [2.82177185]\n", "[0.08795505 0.38948555] [3.08114755]\n", "[0.23275568 0.63885554] [2.8131307]\n", "[0.3896672 0.70026978] [2.46556129]\n", "[0.44465784 0.9749147 ] [2.92317688]\n", "[0.1069464 0.32465186] [3.30674879]\n", "[0.64876744 0.03969659] [3.36517084]\n" ] } ], "source": [ "# show the parameter values we queried and their merit\n", "for p, v in zip(campaign.observations.get_params(), campaign.observations.get_values()):\n", " print(p, v)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we realised that our custom planner is stochastic and does not allow for reproducible results, so we would like to add a `random_seed` argument such that we fix the random seed if desired. To do so, we overwrite the `__init__` method inherited from `CustomPlanner` and add `random_seed` as an argument. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "from olympus import ParameterVector\n", "from olympus.planners import CustomPlanner, AbstractPlanner\n", "import numpy as np\n", "\n", "class RandomSampler(CustomPlanner):\n", " \"\"\"My custom sampler\"\"\"\n", " \n", " def __init__(self, goal='minimize', random_seed=None):\n", " AbstractPlanner.__init__(**locals())\n", " np.random.seed(self.random_seed)\n", " \n", " def _ask(self):\n", " new_params = []\n", " for param in self._param_space:\n", " new_param = np.random.uniform(low=param['domain'][0], high=param['domain'][1])\n", " new_params.append(new_param)\n", " \n", " return ParameterVector(array=new_params, param_space=self.param_space)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization Number 1\n", "[0.37454012 0.95071431] [3.24309206]\n", "[0.73199394 0.59865848] [2.51640451]\n", "[0.15601864 0.15599452] [3.70941192]\n", "\n", "Optimization Number 2\n", "[0.37454012 0.95071431] [3.24309206]\n", "[0.73199394 0.59865848] [2.51640451]\n", "[0.15601864 0.15599452] [3.70941192]\n", "\n" ] } ], "source": [ "# do the optimization twice\n", "for i in range(2):\n", " surface = Surface(kind='Dejong', param_dim=2)\n", " planner = RandomSampler(random_seed=42)\n", " campaign = planner.optimize(surface, num_iter=3, verbose=False)\n", "\n", " print(f'Optimization Number {i+1}')\n", " for p, v in zip(campaign.observations.get_params(), campaign.observations.get_values()):\n", " print(p, v)\n", " \n", " print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can/should see above, the first and second optimizations queried the same points as we have now fixed the random seed." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "olympus", "language": "python", "name": "olympus" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }