Run a larger benchmark

[1]:
# import olympus
from olympus import Olympus
[2]:
# create olympus
olymp = Olympus()
[3]:
from olympus import list_planners
list_planners()
[3]:
['BasinHopping',
 'Cma',
 'ConjugateGradient',
 'DifferentialEvolution',
 'Genetic',
 'Gpyopt',
 'Grid',
 'Hyperopt',
 'LatinHypercube',
 'Lbfgs',
 'ParticleSwarms',
 'Phoenics',
 'RandomSearch',
 'Simplex',
 'Slsqp',
 'Snobfit',
 'Sobol',
 'SteepestDescent']
[4]:
planners=['Gpyopt', 'Hyperopt', 'ConjugateGradient']
[5]:
olymp.benchmark(dataset='alkox', planners=planners, num_iter=20)
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...

Plot results

[6]:
from olympus import Plotter
[7]:
plotter = Plotter()
plotter.plot_from_db(olymp.evaluator.database)
../../_images/examples_notebooks_larger_benchmarks_8_0.png
[ ]: