Run a simple benchmark¶
[1]:
# import olympus
from olympus import Olympus
from olympus import Campaign
[2]:
# create olympus
olymp = Olympus()
[3]:
# run olympus for specific experimentation scenario
olymp.run(dataset='alkox', planner='hyperopt', campaign=Campaign())
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
[4]:
# run olympus with another planner
olymp.run(dataset='alkox', planner='gpyopt', campaign=Campaign())
[INFO] Loading emulator using a BayesNeuralNet model for the dataset alkox...
Plot results¶
[5]:
from olympus import Plotter
[6]:
plotter = Plotter()
plotter.plot_from_db(olymp.evaluator.database)

[ ]: